Telegram Group & Telegram Channel
В каких случаях вы будете применять ROC-кривую для оценки модели?

ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках:
TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными;
▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.

Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.

Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.

В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.

#машинноe_обучение



tg-me.com/ds_interview_lib/301
Create:
Last Update:

В каких случаях вы будете применять ROC-кривую для оценки модели?

ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках:
TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными;
▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.

Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.

Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.

В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.

#машинноe_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/301

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA